Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium.
نویسندگان
چکیده
Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45 degrees C (optimum, approximately 35 degrees C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1omega7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration.
منابع مشابه
Metal-Reducing Bacterium and Characterization of a Novel Alkaliphilic Alkaline Anaerobic Respiration: Isolation
متن کامل
Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds
Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms.
متن کاملTreatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium
Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search...
متن کاملThe Syntheses and Characterization of Three Novel Macrocyclic Polyether Ligands and Some of Their Alkaline Metal Complexes
The macrocyclic ligands 2,3,5,6-Bis{3’-bromo-5’-tert-butyl benzo-5-phenyl benzo} 12C3 (L1), 2,3,5,6-bis{3’-bromo-5’-tert butyl-benzo-5’-phenyl-benzo}15C4 (L2), 2,3,5,6-bis{3’-bromo-5’-tert butyl-benzo-5’-phenyl-benzo}18C5 (L3) have been synthesized and their alkaline metal compounds with NaClO4∙H2O and KClO4 have ...
متن کاملIsolation and Structural Characterization of Alkali and Alkaline Earth Metal Salts with Synthetic Non Cyclic Ionophores
In the present study, an investigation on the complex formation between mono- and divalent metal ions (Na+, K+, Li+ and Mg2+) in the form of salt with different podands using various solvents has been carried out. Isolated complexes were characterized by different spectroscopic techniques viz. IR, NMR and elemental analysis. On the basis of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 70 9 شماره
صفحات -
تاریخ انتشار 2004